This year’s Ig Nobel prizes have been awarded, and include:

FLUID DYNAMICS: Victor Benno Meyer-Rochow of International University Bremen, Germany and the University of Oulu , Finland; and Jozsef Gal of Loránd Eötvös University, Hungary, for using basic principles of physics to calculate the pressure that builds up inside a penguin, as detailed in their report “Pressures Produced When Penguins Pooh — Calculations on Avian Defaecation.”
PUBLISHED IN: Polar Biology, vol. 27, 2003, pp. 56-8.
ACCEPTING: The winners were unable to attend the ceremony because they could not obtain United States visas to visit the United States. Dr. Meyer-Rochow sent an acceptance speech via videotape.

Abstract
Chinstrap and Adélie penguins generate considerable pressures to propel their faeces away from the edge of the nest. The pressures involved can be approximated if the following parameters are known: (1) distance the faecal material travels before it hits the ground, (2) density and viscosity of the material, and (3) shape, aperture, and height above the ground of the orificium venti. With all of these parameters measured, we calculated that fully grown penguins generate pressures of around 10 kPa (77 mm Hg) to expel watery material and 60 kPa (450 mm Hg) to expel material of higher viscosity similar to that of olive oil. The forces involved, lying well above those known for humans, are high, but do not lead to an energetically wasteful turbulent flow. Whether a bird chooses the direction into which it decides to expel its faeces, and what role the wind plays in this, remain unknown.